mathslib
latest

Contents:

  • Overview
  • Installation
  • Usage
  • mathslib
    • mathslib package
mathslib
  • mathslib
  • Edit on GitHub

mathslibΒΆ

  • mathslib package
    • Submodules
    • mathslib.numtheory module
      • divisors_of()
      • divisor()
      • continued_fraction()
      • overall_fraction()
      • phi()
      • phi_sieve()
      • phi_sum()
      • mobius()
      • mobius_k_sieve()
      • count_k_free()
      • ppt()
      • legendre_factorial()
      • k_smooth_numbers()
      • k_powerful()
      • legendre_symbol()
      • tonelli_shanks()
      • chinese_remainder_theorem()
      • generalised_CRT()
      • frobenius_number()
    • mathslib.primes module
      • prime_sieve()
      • is_prime()
      • prime_factors()
      • primepi()
      • primepi_sieve()
      • sum_of_primes()
      • fermat_primality_test()
      • miller_primality_test()
    • mathslib.linalg module
      • gauss_jordan_elimination()
      • solve()
      • inverse()
      • determinant()
      • matrix_addition()
      • identity()
      • concatenate()
      • argmax()
      • fillmatrix()
      • matrix_mul()
    • mathslib.fib module
      • fibonacci()
      • fib_till()
      • zeckendorf_representation()
    • mathslib.algorithms module
      • prims_algorithm()
      • dijkstras_algorithm()
      • floyd_warshall_algorithm()
      • knap_sack()
      • knap_sack_values()
      • BFS()
      • DFS()
      • convex_hull_gift_wrapping()
      • convex_hull_DC()
    • mathslib.simple module
      • n_choose_r()
      • number_to_base()
      • extended_euclidean_algorithm()
      • lcm()
      • mod_division()
      • bisect()
      • is_clockwise()
    • Module contents
Previous Next

© Copyright 2022, Igor van Loo. Revision d08e0684.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds